Visual question answering: Which investigated applications?

نویسندگان

چکیده

Visual Question Answering (VQA) is an extremely stimulating and challenging research area where Computer Vision (CV) Natural Language Processig (NLP) have recently met. In image captioning video summarization, the semantic information completely contained in still images or dynamics, it has only to be mined expressed a human-consistent way. Differently from this, VQA same media must compared with semantics implied by question natural language, doubling artificial intelligence-related effort. Some recent surveys about approaches focused on methods underlying either image-related processing verbal-related one, way consistently fuse conveyed information. Possible applications are suggested, and, fact, most cited works rely general-purpose datasets that used assess building blocks of system. This paper rather considers proposals focus real-world applications, possibly using as benchmarks suitable data bound application domain. The also reports some challenges research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Embedded Question Reuse in Question Answering

The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...

متن کامل

Revisiting Visual Question Answering Baselines

Visual question answering (VQA) is an interesting learning setting for evaluating the abilities and shortcomings of current systems for image understanding. Many of the recently proposed VQA systems include attention or memory mechanisms designed to support “reasoning”. For multiple-choice VQA, nearly all of these systems train a multi-class classifier on image and question features to predict ...

متن کامل

iVQA: Inverse Visual Question Answering

In recent years, visual question answering (VQA) has become topical as a long-term goal to drive computer vision and multi-disciplinary AI research. The premise of VQA’s significance, is that both the image and textual question need to be well understood and mutually grounded in order to infer the correct answer. However, current VQA models perhaps ‘understand’ less than initially hoped, and in...

متن کامل

Speech-Based Visual Question Answering

This paper introduces the task of speech-based visual question answering (VQA), that is, to generate an answer given an image and an associated spoken question. Our work is the first study of speechbased VQA with the intention of providing insights for applications such as speech-based virtual assistants. Two methods are studied: an end to end, deep neural network that directly uses audio wavef...

متن کامل

Open-Ended Visual Question-Answering

This thesis studies methods to solve Visual Question-Answering (VQA) tasks with a Deep Learning framework. As a preliminary step, we explore Long Short-Term Memory (LSTM) networks used in Natural Language Processing (NLP) to tackle Question-Answering (text based). We then modify the previous model to accept an image as an input in addition to the question. For this purpose, we explore the VGG-1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2021

ISSN: ['1872-7344', '0167-8655']

DOI: https://doi.org/10.1016/j.patrec.2021.09.008